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The linearized problem of two-dimensional gravity waves in a viscous incom- 
pressible stratified fluid occupying the upper half-space z > 0 is investigated. It is 
assumed that the dynamic viscosity coefficient ,u is constant and that the density 
distribution p(z) is exponential. This leads to a fourth-order differential equation 
in the x co-ordinate, the coefficients of which depend on p(z) and on a dimension- 
less parameter E which is proportional to plv, v being the frequency of the oscilla- 
tion. The problem is solved for small E .  It is found that there is a region in which 
the solutions behave like certain solutions of the inviscid problem (with E = 0). 
However, when the solutions of the inviscid problem are wave-like in z ,  they do 
not satisfy the radiation condition. This is because the viscosity, in addition to 
damping the motion for large x ,  reflects waves. The appropriate solution of the 
inviscid problem consists, therefore, of an incident and a reflected wave. As 
p u 0 ,  the ratio of the amplitudes of the reflected and the incident wave ap- 
proaches exp ( - 2n2H/h), where h is the vertical wavelength, and H the density 
scale height. The solution, however, does not have a limit since the reflecting layer 
shifts, altering the phase of the reflected wave. The results of the analysis are 
supplemented by a number of numerically computed solutions, which are then 
used to discuss the validity of the linearization. 

1. Introduction 
The problem of waves in an ideal compressible fluid in a half-space, with a speci- 

fied vertical temperature profile, has been investigated frequently, principally 
because of its connexion with the theory of atmospheric waves (see e.g. Lamb 
1932; Eckart 1960). One of the difficulties encountered in this fluid model has 
been the question of how to formulate the so-called ‘upper boundary condition’. 
This paper is concerned with a much simpler problem which exhibits the same 
difficulty. The problem is that of waves in an incompressible but stratified fluid, 
having a density distribution p(z) which decreases exponentially with altitude z. 
The fluid is assumed to be viscous, and the ‘upper boundary condition’ is obtained 
by examining the solution when the viscosity is small. The results obtained this 
way differ considerably from those which would be obtained if viscosity were 
neglected at  the outset. 

In  the linearized version of the more general problem for a compressible in- 
viscid fluid the variables are separable, and one obtains an ordinary differential 
equation of second order in the vertical co-ordinate, x .  Two further conditions are 
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then required to determine a unique solution in the problem of forced oscillations, 
or an eigenfunction in the free oscillation problem. One of these is the well deter- 
mined boundary condition on the vertical velocity at the ground, while the other 
condition depends on the assumptions about the vertical temperature distribu- 
tion as z -+ co, and on the parameters of the wave motion. As an illustration, let us 
consider the case of an isothermal atmosphere. Then, for certain values of the 
horizontal wave-number k and frequency a, the differential equation has one 
solution with finite kinetic energy in a column of fluid, and one with infinite 
kinetic energy. In  this case it is natural to impose as a second condition the finite- 
ness of the kinetic energy. The resulting solution represents a horizontally propa- 
gating wave with a certain amplitude profile in the z co-ordinate: 

f(z) exp [ i (kx -  at)]. 

For other values of the parameters one can find two solutions which represent 
waves with oblique lines of constant phase: 

g(z) exp [ i (kx  - d & P 4 l  
(k, a and Pare all positive). Neither one of these has finite kinetic energy and there 
arises the problem, therefore, of imposing a condition (the upper boundary con- 
dition) which will select the correct linear combination of these wave-like solu- 
tions. 

In the problem of atmospheric tides,t Pekeris (1937) derived a condition by 
considering the limiting case of a small artificial thermal conductivity. An objec- 
tion to his results was raised by Weekes & Wilkes (1947), who pointed out that it 
leads sometimes to solutions which would require energy to be supplied from 00. 

The requirement that no energy should come in from co is, however, not sufficient 
to determine a unique solution, since any linear combination of the form 

A exp [ i (kx  - at -/32)] +Bexp [ i (kx -  d +Pz) ]  with IBI < IAl 
represents a wave with upward propagating energy. The choice made by Weekes 
& Wilkes of the solution with downward phase propagation (B  = 0) implies, 
therefore, not only that the energy flux is upward, but that, in addition, there is 
no reflexion (the term multiplied by B being the reflected wave). This condition 
of upward energy flux and the absence of reflexion, to which we will refer as the 
‘radiation condition’, has recently been questioned by Siebert (1961). Siebert, 
based on his observation that the resonance magnification curves are not smooth 
in the neighbourhood of the transition from horizontal to oblique waves, (as the 
horizontal wave-number is varied) has suggested that the solution should behave 
like a standing wave. It should be noted that precisely at the transition point none 
of the solutions are wave-like in the z-co-ordinate, and that all of them have in- 
finite kinetic energy. Thus, none of the previously discussed conditions are 
applicable. 

The related problem of mountain waves gives rise to a similar question. For 
this problem, the radiation condition was first derived by Lyra (1943) by making 

t Although the tidal problem is formulated for an atmosphere on a rotating earth, the 
vertical equation is identical with the one for the half-plane. 
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use of artificial (Rayleigh) viscosity. The condition was rederived (for an iso- 
thermal atmosphere) later by considering a time dependent problem and show- 
ing that the solution which satisfies the radiation condition is ultimately estab- 
lished as t-tco (Palm 1953; Wurtele 1953; Crapper 1958). However, even this 
approach has not avoided some controversy (e.g. Scorer 1958; Palm 1958). 

Various other conditions are sometimes employed in different problems, the 
most notable, perhaps, being the condition that dpldt+ 0 (wherep is the pressure) 
(Eliassen 1948). This condition is used in problems formulated in pressure co- 
ordinates when the hydrostatic approximation is valid. However, in the tidal 
problem this condition is ineffective because it is automatically satisfied by d l  
solutions of the differential equation. 

It appears that the radiation condition is the most satisfactory upper boundary 
condition consistent with the linearized ideal fluid model, since it can be derived 
from a time dependent problem. However, this linear problem has a basic flaw in 
that it leads to solutions which violate the assumptions underlying the lineariza- 
tion. As is well known, the velocities increase exponentially with z for some solu- 
tions, and, what is perhaps worse, the same is true of the ratio of the density 
oscillation to the equilibrium density, and of the pressure oscillation to the equi- 
librium pressure. In  view of the inconsistency of the solution with the original 
assumptions it seems desirable to re-examine the problem. 

Perhaps the simplest approach is to retain the linearized formulation but to 
abandon the ideal fluid model by including viscosity. One expects the viscosity 
to play an increasingly important role at high altitudes since the density in the 
atmosphere decreases very rapidly (by a factor of 106 in the lowest 100 km) while 
the viscosity varies only slightly. Thus, the viscosity may be expected to damp 
the motion for large z, and in this way to justify the linearized formulation for 
sufficiently small disturbances. By taking the limit of the solutions of the viscous 
problem as the viscosity coefficient ,I& tends to zero one can hope to obtain an upper 
boundary condition which could be used with the inviscid problem. 

In this paper we have selected the simplest viscous fluid problem which still 
retains the two characteristic features: an infinite domain, and an equilibrium 
density distribution which vanishes as z -+ 00, as a consequence of which the vis- 
cosity is expected to have a substantial effect of large z. The main simplifications, 
viz. the assumptions that the fluid is incompressible, has a constant viscosity 
coefficient p, and a density decreasing exponentially with z, are introduced to 
make the problem analytically tractable. This model, although much too simple 
for a direct comparison with atmospheric motions, nevertheless has features 
which are relevant (this point will be discussed further in the introduction and 
in $10). 

Small damping effects of viscosity on upward and downward propagating 
waves in a compressible isothermal atmosphere were investigated by Pitteway & 
Hines (1963). Other investigations have been restricted to the case of constant 
kinematic viscosity (e.g. Golitsyn 1965). This leads to a problem with constant 
coefficients, but the effect of viscosity is, of course, negligible for large z. 

The viscous problem is formulated in $ 2  in terms of a stream function. This 
leads to a singular perturbation problem for a fourth-order differential equation 

14-2 
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with coefficients depending on the equilibrium density p and on a small dimension- 
less parameter B which is proportional to ,u/cr. To determine a solution uniquely 
one must impose the usual no slip condition a t  the ground, and, in addition, a 
condition that the rate of energy dissipation in a column of fluid should be finite. 
By introducing a new independent variable, essentially d(p /e ) ,  the problem can be 
reformulated so that the solution depends on this variable only ($3).  The required 
solution is then found in the form of a series ($  5 ) ,  the asymptotic behaviour of 
which yields the conclusions concerning the upper boundary condition ( $ 9  6, 7 
and 8). The results of some numerical computations of solutions for various values 
of wave parameters are given in $ 10. These are used to estimate the magnitude of 
the excitation for which the linearized formulation can be expected to be valid. 

The main results is that the radiation condition does not hold when the ratio of 
the vertical wavelength h to  the scale height H is large. For sufficiently small ,u 
there is an ‘inviscid region’ in which the solution of the viscous problem can be 
approximated by an appropriate solution of the inviscid problem, which consists 
of an incident wave (with outgoing energy) and a reflected wave. The nature of 
the solution in this region is determined primarily by a relatively thin layer above 
the inviscid region. Above this reflecting layer the viscous forces predominate and 
the velocities decay to zero. As ,u -+ 0 the reflecting layer recedes to m, but the 
ratio of the amplitudes of the reflected to the incident wave, IB/AI, tends to a 
limit, which is exp ( - 2r2W/h). Thus, the ratio of the reflected to incident energy 
tends to a limit also. The solution, however, does not approach a limit at fixed 
values of z, for the shift of the reflecting layer causes a change in the relative phase 
between the two waves. 

Since the limiting value of the magnitude of the reflexion coefficient I B/AI is 
exp ( -  2r2H/h), the solution behaves more and more like a standing wave as 
h -+ co, i.e. near the transition from horizontally propagating to oblique waves. 
In this region, therefore, Siebert’s suggestion appears to be justified. As h de- 
creases, however, the amplitude of the reflected wave decreases rapidly, and when 
the dimensionless wave-number /3 = 2nH/h > 1, the radiation condition is sub- 
stantially correct. This situation is not too surprising, since the variation of the 
kinematic viscosity in a vertical wavelength is large when /3 is small, and can be 
expected to cause reflexion. However, it  might be noted that a large change in the 
kinematic viscosity is required to produce a sizable reflexion, since even for 
/3 = 1, ,u/p changes by a factor of about 400 in one vertical wavelength. 

Reflexion due to viscosity will also take place in a compressible isothermal 
atmosphere (a special case is solved in Yanowitch 1967). The vertical equation 
for this model is very similar to the one for an incompressible fluid, the main 
difference being that for a compressible fluid there is a high frequency and a low 
frequency range of waves with oblique lines of constant phase, while for an in- 
compressible fluid there is only a low frequency range. Reflexion due to viscosity 
can thus be expected to occur in the neighbourhood of both the high and low 
frequency transition points, and conclusions derived from the incompressible 
model are probably qualitatively correct for the low frequency range. The effect 
of viscosity is, therefore, likely to have some importance in the problem of semi- 
diurnal oscillations. This is indicated by the fact that the second equivalent height 
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for an atmosphere with an isothermal top layer is usually computed (using the 
radiation condition) to lie near the value at which the transition from horizontal 
to oblique wave propagation takes place (T‘lrilkes 1949; Jacchia & Kopal 1951). 
Reflexion of waves may also be significant in the problem of propagation of waves 
due to large disturbances, since the wave components beyond cut-off may not be 
negligible. 

2. Formulation of the problem 
Suppose an incompressible, viscous, inhomogeneous fluid occupies the half- 

space x > 0 when at  rest. It will be assumed that the dynamic viscosity coefficient 
j~ is constant and that the equilibrium density distribution p depends on the 
altitude z only. (Later we will specialize to the case of exponentially decreasing 
density.) The linearized equations of motion are then? 

=PA% (1) 

(2) 

ux i- w, = 0, (3) 

pt+ptw = 0, (4) 

pwt i- 9, + gP = PAW, 

where u and w are the horizontal and vertical velocity components, 9 and p are 
the pressure and the density perturbations, g is the acceleration of gravity, A 
represents the two-dimensional Laplace operator and a prime denotes differentia- 
tion with respect to z. We will consider two-dimensional infinitesimal waves 
excited, for example, by a small oscillation of the lower boundary:$ z = dei(kx-ut). 
Let Y be a stream function defined by Y, = u, YX = - w. Then Y? satisfies the 
differential equation 

which can be obtained by eliminating the pressure and density perturbations. 
Letting Y ( x ,  x ,  t )  = Z(x) ei(kz-ut), one obtains an ordinary differential equation of 
fourth order for Z(x): 

[ P Y z x  + ( P ~ z ) , l t t  - 9P’\T,, = PAAyt, (5) 

ia-lp[d2/dz2 - P I 2 2  - [(PZ’)’ - k2pZ - g(k / c )~p’Z]  = 0.s (6) 

The no-slip condition at the lower boundary requires that u = 0 and 
w = - i c d  ei(kx-Uo at z = 0, i.e. 

Z(0) = da /k ,  Z’(0) = 0 (7)  

when k # 0, or when k and c both tend to zero, with a/k approaching a finite 
limit. 

It is convenient to rewrite the problem in dimensionless form. Let H be a 
characteristic length related to  the density stratification, for which one can take 
a suitable value of ( -p’/p)-l. Then, referring all lengths to H ,  velocities to 2/(gH), 

t A list of symbols appears at the end of the paper. 
$ The exact nature of the boundary condition is unimportant, wi l l  be seen later. 

If u is replaced by iu one obtains an equation considered in stability theory (Chandra- 
sekhar 1961, p. 430). 
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and the time to the period ,/(H/g) (this corresponds to the Brunt-Vgisala fre- 
quency for this case), we can define 

p* = p/p(O), Z* = z /H ,  X* = x / H ,  k” = k H ,  (T* = ( H / g ) t c ,  

Z* = Z/(gH3)4, 8 = p[4p(0 )  H20-]-l. (8) 

Apart from the exponential factor, Z* is a dimensionless stream function, with 
dZ*/dz* and - ik*Z* being dimensionless horizontal and vertical velocity com- 
ponents. Frequently, instead of the parameter e (which is proportional to the 
ratio of the Strouhal number to the Reynolds number) it will be more convenient 
to employ S = -In E .  

Since everything will be expressed in terms of the dimensionless quantities 
from now on, the asterisk can be omitted without danger of confusion. Then, the 
differential equation (6) and the boundary conditions (7) can be rewritten in the 
form 

4i€[d2/dX2-k2]22- [(PZ’)’ -k2pZ- (k/g)2p‘Z] = 0, (9) 

Z(0) = da/Hk,  Z’(0) = 0.  (10) 

( 1 1 )  

If p = e+ (i.e. p = p ( 0 ) e d H  in dimensional quantities), then (9) becomes 

4[d2/dz2 - k212 z - e-Cz-S+$in) [Z”-Z‘+rZ] = 0, 

where r = k 2 ( r 2 -  1). 
The problem for the differential equation (9) with boundary condition (10) is, 

of course, incomplete. Further conditions are needed to determine a unique solu- 
tion, We will impose the following additional condition, which we will call the 
dissipation condition (DC): the average rate (per period) of energy dissipation in an 
inJinite vertical column ofjluid (0 < z < GO) of unit cross-section area must beJinite. 
The necessity of this condition is evident on physical grounds, since the rate at 
which work is done by a portion of the lower boundary of unit area on the fluid 
above is finite. It will be shown that for the case to be discussed this condition is 
also sufficient for uniqueness.-t The DC appears to be a reasonable one, therefore, 
since any other solution of the differential equation (9) satisfying the boundary 
condition (10) requires an infinite energy flux from infinity. 

To apply the DC we need only note that the dissipation function depends on 
the squares of the space derivatives of u and w. Consequently, the DC is equiva- 
lent to loW IZ12dz < co, jom IZ’12dz < co, 1; [Z”12dz < 00. 

lz: 

(12) 

The complete energy flow equation for the differential equation (9) can be ob- 
tained by multiplying (9) by z (the complex conjugate of 2) and integrating 
between z = z1 and z = z2 yields 

4i€[ZZ’’’ - z12  - 2k~2.2’12 - [p  ZZ’12 + {p 12’12 + k2pl212 + k2a-2p ’I ZJ2)dZ 

+ 4islzy { IZ”I + 2k21 2’ I + k41Z1 2, dz = 0. (13)  

t For the case of horizontal motion independent of x, one can show that the DC is 
correct for any density distribution. 
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The imaginary part of this expression is the required energy flow equation: 

4s Re [ZZ”’ - Z’Z” - 2k2ZZ‘Iz - Im [pZZ‘];; 

The integral in (14) is proportional to the average rate of energy dissipation in a 
column of fluid of unit cross-section between z1 and x2 ,  while the other terms are 
proportional to the fluxes of energy due to the work done by the pressure and the 
viscous forces at the ends of the column. The DC applied to (14) implies (12). 

3. Heuristic discussion of the problem 
We will be interested in the problem when the viscosity is small, i.e. for small 

values of E. For any s =+ 0, no matter how small, the viscous terms will dominate 
for large x if p(z) + 0 sufficiently fast as x -+ co. Thus, as x + co it is expected that 
solutions of (9) will behave like solutions of 

(d2/dz2- k2)2Z = 0, (15) 

i.e. like linear combinations of e-kz, xe-kz, ekz and xekz, if k =+ 0 (for p = e+ this will 
be proved later). For convenience, we will always take k to be non-negative. Then, 
only the first two of the above solutions satisfy the DC and we are led, therefore, 
to the problem of finding a solution of (9) which satisfies the boundary conditions 
(10) and behaves like (ax + b )  e-kz as x + co. For the case k = 0, the solutions of 
(15) are polynomials of the third degree and the DC requires that 2 w ax + b as 

For small s the solution to the problem can now be expected to behave in the 
following way. There will be an ‘ inviscid region ’ (IR) in which p / s  is large and the 
solution can be approximated by some solution Zi of the inviscid problem, 

Z+CO. 

(~22)’ - k2pZ,i - k2a-2pfZi = 0, Z&O) = 1. (16) 

This region is connected to  the lower boundary x = 0 by a boundary layer (BL) 
which reduces 2’ (i.e. the horizontal velocity) to zero as x+O. In  the BL 2 will 
behave approximately like a solution to 4icZ(IV)- 2” = 0, so that the width of 
the BL will be of the order of st.  For sufficiently large z,  i.e. for sufficiently small 
p/e,  the solution will be determined by the viscous forces and the pressure forces 
(‘viscous region’ - VR). The IR and the VR will be joined in a transition region 
(TR) in which p/s changes from large to small values and both the viscous and the 
non-viscous terms in the differential equation will be significant. The main prob- 
lem, of course, is to connect the solutions across the TR. 

Once a solution has been found, its behaviour in the IR can be investigated as 
s+O in order to determine the correct ‘upper boundary condition’ for the in- 
viscid problem. When p = e-z the differential equation for the inviscid problem 
reduces to one with constant coefficients: 

2; - 2; + rZi = 0, (17) 
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and the form of the solution depends on whether (4 - r )  is positive, negative or 
zero. Letting a = (4 - r ) i  when r < $, and ,!3 = ( r  - t): when r > 4 (a > 0, /3 > O),  
we can express solutions in the following form : 

(18) I Zi = e*Z [A e-a8 + Beaz] if r < 4, 

= etZ [ A  + BInz] if r = t ,  
= e& [A e-iBz + BeW] if r > $, 

(here and elsewhere A and B denote constants which can assume different values 
in different expressions). The problem of determining the ‘upper boundary con- 
dition’ is then equivalent to that of finding the ratio B/A when r > $ and E is 
sufficiently small. It will be seen later that in this case the solution of the complete 
problem, 2, can be approximated by Zi, but that A and B vary with E and B/A 
does not tend to a limit as e -+ 0. 

4. Change of variables and asymptotic behaviour 
From this point on we will consider an exponential density distribution, i.e. 

p = e-O. Since the solution. will depend on p/e, i t  will be convenient to introduce a 
new variable, [ = exp [ - * ( z -  6+ &;.)I. Then dldz goes over into - g0, where 0 
represents the operator [d /d [ ,  and the differential equation (1 1) transforms into 

LZ = ( ( 0 2 - 4 k 2 ) 2 - ~ 2 ( 0 2 + 2 0 + 4 r ) ) Z  = 0. (19) 

Real values of x go over into points on the ray arg [ = 4. in the complex &‘-plane, 
with x = co being mapped into [ = 0 and z = 0 into < = t1 = exp i(6- *in-). The 
boundary condition (10) becomes 

Z(<,) = d a / H k ,  0Z([,) = 0. (20) 

( 0 2 + 3 0 + 4 r ) Z i  = 0, (21) 

The differential equation for the inviscid problem in the new variable is now 

and solutions can be written in the form 

( 2 2 )  1 Zi = [-1(A[2r + B[-2r) (Y + t), 
= [-l(A+Bln[) (r = i).. 

Here y = ( t - r )S  = a  > Oifr < 4, and y = $3, p = ( r - a ) i  > Oifr  > 4, while [a 

denotes ea In 5 EN usual, where In [ is the principal branch of the logarithm. 
The point < = 0 is a regular singular point of (19), and in the neighbourhood of 

this point solutions behave like linear combinations of [ 2 k ,  [ -2k ,  czk In 6, [-2k In [ 
for k > 0. Except for a multiplying constant, these functions correspond to e--k@, 
z e--kz7 ekz and z ekz, and consequently the DC requires that solutions should behave 
like [2k(A +Bin[) near &‘ = 0. For k = 0 the analogous result is Z N A + Bin[. 
This proves the statement made in the previous section. 

As E +  0 the end point C1 goes to co along the ray arg [ = - in, and therefore, 
we will want to make use of the asymptotic behaviour of Z(<). There are two 
solutions which behave exponentially as [+ 00: 

00 

X?([) - e*E[-%Xb$[-n (larg[] < in), (23) 
0 
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where the coeilicients can be determined by formally substituting in the differ- 
ential equation. The exponentially growing solution, #,+ (t;) ,  is significant only 
near < = C1, i.e. near z = 0. In  fact, for small x ,  S$ behaves approximately like 
exp [(i - 1) z / (Se)*] ,  and thus corresponds to the boundary-layer solution. There 
are two other solutions which to first order behave asymptotically like solutions 
of the inviscid equation, Zi. The form of the asymptotic series for these solutions 
depends on the values of y and k, and the details are given in the appendix. 

Let S(t;) be a solution which satisfies the DC and which grows less rapidly than 
St(<) in the sector larg<I < gz-. Since ST([) vanishes faster than Zi(t;), S(<) be- 
haves asymptotically like some solution of the inviscid equation (in larg t;] < in-). 
If S(<,) =l= 0 (it will be seen later that this is always the case for large &), S(6) 
can be multiplied by a suitable constant to satisfy the boundary condition 
Z(&) = du/Hk .  Furthermore, since S$(<)/OX,+(<) N <-I, it  is clear that one can 
add a multiple of the boundary-layer solution, X,+([), so as to satisfy @Z(t;,) = 0 
with only a small change in the value of S at tl. Thus, a multiple of X( t ; )  will be a 
uniform approximation to the solution of the complete problem, Z(t;), in any 
fixed interval 0 < [ < as c+ 0, and the asymptotic behaviour,of S(5) will deter- 
mine the upper boundary condition for the inviscid problem. We will simplify 
the problem, therefore, by looking for X(<) instead of Z(<). 

5. Series representation for S(EJ 
The solution S(<) can be found by taking a suitable linear combination of 

series solutions relative to the regular singular point t; = 0. One such solution 
satisfying the DC can be written in the form: 

where Ic 3 0 and the coefficients can be evaluated by substituting into the 
differential equation (19)) 

(n+ Icp- (n+ k) f r  
n’yn + 3k)2 

( % + I % -  Q- y )  (n+ k- g + y )  
nyn + 2 4 2  an-1 (25) an = a,-1= 

(n  = 1,2,  . . .). Setting aside temporarily the special case when y - k + + is a posi- 
tive integer (for which the series in (24) terminates), we can write 

where (27) 

and we have set a, = 1. Now, let a(g)  be an analytic function which coincides 
with an when y = n: 
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Then, a second solution satisfying the DC can be written in the form 

Here 

a'(n)/a(n) = $(n+ k + 4 + y )  + $(n + k + 4 - y )  - 2$(n+ 1 )  - 234n + 2k+ 1) (30) 

and $(g) is the Psi (or Digamma) function, defined by $ ( g )  = r'(g)/r(g). The 
power series in the expressions for Zl(6) and Z,(() are entire functions of E since 
the differential equation (19) has no singularities other than 6 = co and the regular 
singularity at = 0. 

In  Q 8 it will be shown that Z,(5) has the correct asymptotic behaviour required 
of S([) .  To show that apart from a multiplicative constant it is the only solution 
with the proper behaviour, we will now investigate the asymptotics of Z1(g). 

Since the exponentially increasing solution dominates in the sector I arglt < Bn, 
it  is natural to compare the series for Z1(E) with a series of the same form which at 
00 behaves like X,+(c). For this purpose one can employ the series for $-lIl(6), 
where I1(6) is the modified Bessel function of the first kind of order one: 

6-11~g) = ;5 ( g y / r ( n +  i ) r ( n + 2 )  
0 

N (2n)-45fet as C+co(larg[I -= tn). 
Expression (23 )  shows that to first order the asymptotic behaviour of 8: is in- 
dependent of k. Hence, it will suffice to consider the case k = 0. For k = 0, 

Making use of the asymptotic formula 

r ( z + a ) / r ( z + b )  ~ a - ~ { l  +O(z-l)}, 
we obtain for large n 

a, Q(o ,y ) [W(n+  i)l?(n+2)]-1{1 +O(n-l)}. (32 )  

By compasing with the series for 6-lI1([), we conclude that for [-+ 00 (largcl < &r) 

[the higher order terms in the expression for a, contribute a quantity which is 
O(E-212(g)), i.e. O(6-3es)l. Thus, the only solutions with the proper asymptotic 
behaviour are proportional to 2,. It is convenient to take 

m 
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6. Magnitude of the reflexion coefficient 
From the form of the expression for X(() and what is known about its asymp- 

totic behaviour, one can immediately deduce an important conclusion concerning 
the possibility of reflexion of waves. Let us consider the case r > $ (y =ip), i.e. 
the case of obliquely propagating waves. Since r(C) = r(S) and $(%) = $(c), i t  is 
clear from (26), (30) and (34) that S(() is real for real positive c. Furthermore, 
since AS'([) must behave like a solution to the inviscid equation for large ( in the 
sector Iarg (1 < in, its asymptotic behaviour in that sector is given by 

S(6) N (-'(A'pis+Bp@), (35) 

where A and B are complex constants which, in general, depend on p, k and 6. In  
order for the expression on the right-hand side of (35) to be real on the positive 
&axis, A and B must be complex conjugates of each other, i.e. 

S( ( )  N IAl (-l(ei~(2iB+e-i@(-2iP), (36) 

where q5 = arg A .  Since real z corresponds to arg [ = - in, let ( = se-g$n, and let 
us examine (36) for real positive s: 

S const. 8-1 [ehb+i$sW + e-[hb+W)s-W], (37) 

Transforming back to the x variable, one obtains 

S N const.eaz{exp[+n,5+iq5-iiP(x- 8)]+exp[-'i.rrp-iq5+i/3(x- S)]), (38) 

or S N conste~z[e-i8z+KReiBz], (39) 

(40) where R -  K - e-n/?-2i(BS+@) 

is the 'reflexion coefficient'. If the constant in (39) is determined so that the 
expression on the right-hand side is equal to dulHk when z = 0, we obtain an 
approximation to the solution of the problem in the IR, 

z(Z) N (dg /Hk)  (1 +KR)-l(e-iB.+KReiaz). (41) 

The first term in (41) represents the 'incident wave', which has downward 
travelling phase and an upward energy flow, while the second term is the reflected 
wave, with reversed directions of phase and energy propagation. So far, only the 
magnitude of the reflexion coefficient, lKRl = e-@, has been obtained; the phase 
constant, 9, will be determined later. It is important to note that although [ KRI 
depends on ,5 only, arg KR depends on p, k and 6. Thus, if CT and k are kept constant 
and the viscosity, p, tends to zero, the solution does not approach a limit at a fixed 
point x ,  since arg K ,  varies with 6. 

From (40) i t  is clear that the magnitude of KR increases with decreasing p, i.e. 
with increasing wavelength in the vertical direction, and approaches 1 as p+ 0. 
Thus, when p is small there is almost total reflexion, and in the IR the solution 
looks like a standing wave (the limiting case p = 0 must be examined separately, 
however). As increases I KRI decreases rapidly, becoming negligible (approxi- 
mately 0.05) for /3 = 1. The radiation condition is, therefore, reasonably accurate 
for p > 1, but not for small p. 
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As we have remarked in the introduction, this situation is plausible, since the 
kinematic viscosity changes more rapidly per wavelength in the vertical direc- 
tion as p- 0, and can be expected to cause a reflexion. It is interesting to note, 
however, that a large change in the kinematic viscosity is required to produce a 
substantial reflexion, since even for p = 1, pip changes by a factor of about 400 
in one vertical wavelength. 

7. The case (y - k+ 9 )  is a positive integer 
The case where y - k - 4 = N ,  a non-negative integer, can occur only for r < 0, 

i.e. for (T 3 1 (in dimensional quantities, for 3 (y/H)B). When r is negative the 
solution to the inviscid problem represents an oscillation which is already ex- 
ponentially damped in x ,  and one expects the viscosity to have a relatively small 
effect. In this case, the series (24) will terminate after N +  1 terms 

N 

0 
Zl( t )  = Can (&?)m+k, (43) 

and the asymptotic behaviour of Z,([) is governed by the term of highest order 

el([) N const. [2(N+k) = const. [ - - 1 + 2 ~ ,  (43) 

i.e. Z , ( t )  behaves like a solution to the inviscid problem. A second solution in this 

and for n > AT, the coefficients dn satisfy the recursion relation (25). Therefore, 
Z&) behaves asymptotically like <-lI1(E). Consequently, apart from a multiply- 
ing constant, Z,([) is the only solution with the required asymptotic behaviour, 
and we can take N 

0 
X([) = const. an(g[2)n+k. (45) 

For e+ 0 (i.e. El+ co) the boundary condition Z(6,) = dcr/Hk implies 

i.e. 
(46) 

147) 

where the approximation holds uniformly for all z (to obtain an approximation 
for Z’(z) one must add on a boundary-layer solution). In  the special case N = 0,  
the series consists of one term, which is, in fact, just the solution to the inviscid 
problem. Consequently, if y - k - Q = N ,  the solution to the inviscid problem is a 
good approximation to the solution of the complete problem. 

8. Integral representation and asymptotic behaviour of Sg) 
Previously a heuristic derivation of the magnitude of the reflexion coefficient, 

K R  = e-bfl, was given. Now, this result will be proved by computing the asymp- 
totic behaviour of X(f;). I n  the process the previously unknown phase constant, 
4) will be determined, and at the same time the cases r < 2 and r = $ will be 
treated. 
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Throughout this section it will be assumed that y - k + i  is not a positive 
integer, so that X(5) is given by the series (34) and the coefficients an by (26), or by 
(28) with 5 = n. The asymptotic behaviour of S(5) for large 6 in the sector 
largcl < &r will be obtained by first transforming the series (34) into an integral 
by means of the residue theorem, and then estimating this integral (see e.g. Ford 
1960). 

The presence of a’(n) in the coefficients of the series (34) suggests the use of an 
integrand with poles of second order at the integers. Let us consider an integral 
of the form 

~iv, = - (1/2ni)J-xMFK, t ) G ( 5 ) K  (48) 

where F(5, 6) = a(C)e2(t+lc)ln4t, G(5) = n 2 c s c 2 ~ I ;  (49) 

and the path of integration will be specified later. Since y - k + Q + integer, a(5) 
is regular at 5 = n, and since G(5)  N (5- n)-2 + Qn2.. . near 6 = n, the contribution 
of the integral from the residue at 5 = n (n = 0,1,2, . . .) is - dF(n, [) /dI; ,  i.e. 

- [ln~~2+a’(n)/a(n)]a(n) ($62)n+k. (50) 

FIGURE 1. Contour of integration. 

Consequently, to sum the series (34), let us take for C,,, a rectangular sontour 
(see figure 1) with the right-hand vertical portion lying along Re 5 = N +  4 
( N  = integer), the two horizontal portions along Im 5 = M ,  and the left-hand 
vertical portion being somewhat to the left of the imaginary C-axis. Then, INnl is 
equal to the sum of the first N +  1 terms of (34), plus the contribution due to 
whatever other singularities are enclosed within C,,,. To obtain an integral 
representation for S(g), we will take the limit as N +  00. 

From the expression (28) for a(<) and the asymptotic formula for the Gamma 
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Since G(5)  is bounded on Re 5 = N + Q, it is clear that for any fixed 6 the contribu- 
tion to IN, from the right-hand side of C,, goes to zero as N -+ co. Consequently, 
letting C, be the path shown in figure 2, and IM the integral over C,, we can see 
that I&, - 8(c) = contribution due to singularities other than 5 = n. 

We will now show that the contribution from the horizontal portions of C,, 
tends to zero as M +  00. To see this, let us note that 

C(5) N 4e-2rlImC (54)  

as IIm 61 -+ 00. Consequently, for large M ,  

p(6 6)G(5)1 const. 1612k"11-2k-2 
xexp{-2Reg(ln12lJ61- 1)+2Im[(argc-arg[Tn)}, (55) 

where the upper and lower signs apply only to the upper and lower sides of C,, 
respectively. Now, if 6 is any fixed number with - in + 7 < arg 6 < in- - 7, where 
q is an arbitrarily small positive quantity, it is clear that Im <(arg 6 - arg 6 F n) is 
always negative on the upper and lower sides of C for sufficiently large M .  Con- 
sequently, for any fixed 6 with larg(1 < Qn-, the contribution from the horizontal 
parts of C,, tends to zero exponentially as M + 00, and C,, can be replaced by a 
vertical straight line (traversed downward) to the left of the imaginary 5-axis. 

5 -plane 

FIGURE 2. Contour of integration. FIGURE 3. Contour of integration. 

The function u(5) has simple poles at 5 = 6, = - (Q + k) f. y and at 6 = 6, - n 
( n =  1,2,.. .)ifr + $,andpolesofsecondorderat[= - (++k+n) i f r=  t (y=O).  
In view of the restriction y - k + Q + N ,  all these poles are distinct from the inte- 
gers. Letting C be a vertical straight line traversed in the upward direction (see 
figure 3) and not passing through any of the poles, we obtain 

where Ri denote the residues of F(5, 6)  G(5) at those poles of a(5) which are to the 
right of C. If Re y < 4 + k (in particular, if y = ip) all the poles are to the left of 
the imaginary axis, and if C Iies between <* and the imaginary axis, X(5) is given 
by the integral 

~ ( 6 )  = ( 1 / 2 n ~ ) S c n 2 c s c 2 n - 5 ~ ( 5 ) e 2 ( ~ + ~ ) h ~ ~ d i .  (57) 
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Case 1. y = ip (T > 4) 
Let C be the contour Re 5 = - (1 + k). Then, the pair of poles 6 = c* lie to the 
right of C, while all the rest of the poles of a(5) are to the left of C. Letting I, 
denote the integral in (57), we can write 

S(8 = Ic - (R, + R-), (58)  

where R, and R- denote the residues of F({, c )  G(g)  at 5, and [-. First we will 
estimate the integral I,. On C 

IeZ(C+k)In%l = 9I[I-ze-ZImC(arg8. (59) 

Letting +co with argE fixed, we can see that the integrand in I, is O@?). 
Furthermore, since the integral taken along C converges absolutely, this shows 
that 

as g+co with larggl < +n. 
I, = O(6-2) (60) 

The residue R, a t  c+ = - (B + k) + ip is given by 

Making use of the identity 

we can write this expression in the form 

where A = A(k,  p) is given by 

r ( z ) r ( i - z )  = ncsCnz, 

R - -Ag-l+Zig, + -  

rz(i + ii - ip) 
rz(+ + IC + ip). A =  -&2- zip r (zip) 

It is evident from (27) that Q is positive. Thus, 

where 

The residue at c- = - ( 9  + k) - $3 can be obtained from the above formulas simply 
by changing the sign of p, and it is evident that A(k ,  -p) = A(k,/3). Since the 
contribution due to Ic is small compared to (R, + R-), we obtain 

A = QII'(2ifl)I e@, (64) 

(65) #I = #I@, p) = n - 2pln 2 + arg r(2ip) - 4 arg I?(+ + k + ip). 

S([ )  - 'g-1 (Apia + &-ZiP) 

N I A I g-1 (e i l  EziP + e i$g-W) (66) 

for large 151 in the sect01 largtl < in. This expression is identical with (36) and 
this proves the results developed previously, with the phase constant q5 now being 
known from (65). Since r(z) cannot vanish (l/r(z) being an entire function), A 
cannot vanish, and its magnitude, therefore, is unimportant since the solution 
must be normalized to satisfy the appropriate boundary condition. It should be 
noted that more terms in the asymptotic representation for S(4) can be obtained 
by moving the path C to the left and evaluating the residues at 5 = c+ - n, or 
directly from the formal asymptotic series (see appendix). 
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Case 2 .  y = a ( r  < 4) 
It is clear that the main contribution will come from the pole of a ( ( )  which is 
farthest to the right, j.e. from <+ = - (Q + k )  + a. Choosing the path of integration 
C to be the straight line Re < = - (1  + k )  +a, and using the same procedure as in 
the previous case, we obtain 

X(5) N const. t-1+20r [1+ 0(5-l)] (67) 

in the IR. Thus, as the viscosity goes to zero, the solution of the viscous problem 
approaches that solution of the inviscid problem which has finite kinetic energy. 
If the solution is required only in some fixed interval z1 < z < z2, and if p is 
sufficiently small, the viscous problem can be replaced by the inviscid one. Of 
course, when a < Q the effect of viscosity is important in attenuating the solution 
at large altitude. For a > 4, when the solution to the inviscid problem decays 
with increase in z, the effect of viscosity can be expected to be negligible. 

Case 3. y = 0 (r = &) 
The poles <+ and <- now coalesce into a double pole at  < = - (k + g) ,  and one can 
take the line Re 5 = - (1 i- k )  for the contour C. The contribution of & is again 
O(t--2)) and evaluation of the residue yields (for larg<I < Qn) 

S ( t )  N <-1[ln(~<z)-2ntankn-+8@(1)-2@(Q-k)-2@(Q+k)] 

N ~ - " l n ( & < ~ ) + 2 ~ ( 1 ) + 4 @ ( Q + k ) l ,  (69) 

( 70) 

(71) 

where we have made use of the relation $(z )  - @( 1 - z )  + n cot n-x = 0. Thus, 

Z(z)  N const. e+(z+q), 

q = gin - 6+ 2[2@(Q + k )  - $( 1) +In 21. where 

As kc + 0 ( E + 0)) cY+ 00 and for any fixed interval in the z solution Z(z) tends to a 
constant multiple of ea.. However, unless the viscosity ,u is very small the ze tZ  
term in (60) will not be negligible (see $10). 

9. Computations 
To obtain an estimate on the extent of the IR and the TR, and to get some idea 

of the behaviour of solutions outside the IR, a number of solutions were computed 
for various values of k and r.  Some typical results are shown in figures 4-8. 

Because of the presence of an exponentially growing component in solutions of 
the differential equation (19)) X(s) was computed by using the series representa- 
tion 

X(s) = 3 [$in -In ( i s z )  - u'(n)/u(n)]a,( - &is2)"fk 

with a'(n)/a(n) given by (30) and s = exp[&(S-z)]. The horizontal velocity 
U = - +OX(s) was obtained from the corresponding series. It was necessary to 

W 

0 
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use double precision because the maximum term of the series grows exponentially 
with s, and each solution was extended to values of s for which the behaviour of 
slSl agreed well with the first term of its asymptotic expansion. This limited the 
range of /3 to less than about 2 (r < 4.25). 

To obtain a'(n) /a(n)  to the required degree of accuracy the expression (30) has 
to be rearranged. Making use of the functional relation $(z + 1) = $(z) + l / z ,  one 
can write 

$(n+ k+ Q + y )  + $(n + k + Q - y )  - 2$(n+ 1) = $ ( k +  3 + y )  

and 

+ $(k + 4 + y )  + $(k + 3 - y) .  (73)  

The asymptotic expression, $(z) = l nz  - l / z  + . . . , shows that the left-hand side 
of (72) approaches zero as n+co, and thus one obtains an evaluation of 
$(k + Q + y )  + $(k + 4 - y).  Finally, letting 

one can show that 

= - T(co, k )  - 2$( 1 + 2k) (n = 0). J 
Since double precision had to be used, the constant T(co,k) was computed to 
25 decimal places by means of the Euler-McLaurin formula. 

10. Discussion of results 
In  discussing the computed solutions it will be convenient to distinguish three 

ranges of the parameter r1 which, in dimensional quantities, is equivalent to 
(gH/  V 2  - k2H2), where V = cr/k is the horizontal phase velocity. The three ranges 
are: r < 0 (for which the dimensional v 2 , / (gH)) ,  0 < r < 2, and r > 2. The tran- 
sition value, r = 2 will be considered separately. For long horizontal wave- 
lengths, r = $ corresponds to ?' = 2 d(gH).  

For r < 0 the solutions of the inviscid problem decay exponentially with z and 
viscosity is not expected to have an appreciable effect. This was already noted for 
the special case y - k + 3 = N .  In figure 4 solutions for r = - 0.75 and two differ- 
ent values of k are shown. The curves show the non-dimensional horizontal 
velocity amplitude U plotted against s, i.e. against [p/p(O)e]*. It can be seen that 
the graphs are almost indistinguishable from straight lines which correspond to 
solutions of the inviscid problem. 

For the remaining cases (r > 0) the solutions of the inviscid problem grow 
exponentially with z and viscosity plays an important part. Some results for 

15 Fluid Mech. 29 
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r = 0.16,0.25,0-5, 1.25 and 2.5 are shown in figures 5-8. For 0 < r < f i t  is con- 
venient to plot I UJ against In s, and for r 2 $, S J  U J  against Ins, since this clearly 
displays the asymptotic behaviour. When s is large the solutions of the viscous 
problem behave like appropriate solutions of the inviscid problem, which are 
given by the asymptotic formulas derived in 3 8. This range of s, therefore, cor- 
responds to the IR. For sufficiently small s the solution X(s) can be approximated 

1 I I I 

30 

10 

0 10 20 30 40 
6 

FIGURE 4. Solution of the viscous problem for r = - 0.75 and k = 0.05,l.O. 
U = horizontal velocity amplitude/(gH)*, 8 = [p/p(O)e]k 

by the term - In ($9) ( - $$s2)h, and the region where this approximation is valid 
corresponds to the VR. The TR lies in between these two. Of course, these designa- 
tions are not precisely defined, but there is no difficulty in identifying the different 
regions on the graphs. It should be noted that the solutions for k = 0 should be 
interpreted as approximations to solutions for small k, the approximatioiis being 
valid except in the neighbourhood of s = 0. One cannot take the limit as k+O 
(with ,u fixed) since this necessitates CT-+ 0, which implies e+ 00. However, for 
reasonable values of p and H one can still consider oscillations with periods of 
about lo6 hours. 

In  order to translate the result into physical terms one must choose values for 
,u and H .  We will take p to be 2 x 10-6kg/sec, which corresponds to the value in 
the atmosphere at about 120km.t Then, the value of the small parameter E is 
approximately 5 x 10-11 for oscillations with a period of 1 h, and the correspond- 
ing value of 6 is 23.7. Letting the scale height be 7 km, we obtain approximately 
3 min for the characteristic period 27r 2/(H/g) and 265 m/sec for the characteristic 
velocity ,/(gH). It seems likely that most of our conclusions for low-frequency 
oscillations will apply qualitatively to the case of an isothermal atmosphere. 
However, quantitatively there will be some differences, since the Brunt-Vtiisala 

t U.S. Standard Atmosphere, 1962 Washington, D.C., U.S. Government Printing Office. 
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frequency is lowered and the characteristic period will be about 5min for the 
same value of H .  

In the solutions which were computed (r < 4-25, 0 < k < l), the IR generally 
appeared to end a little below the point where p(z) = 8. For example, for r = 0.16 
and a period of 12 h the IR is roughly z < 20 (scale heights),.i.e. below 140km. 

1-0 
08 
06 

02 

01 
- 1  0 1 2 3 4 

Ins 

FIGURE 5. Solutions of the viscous problem for r = 0.16, k = 0. U = horizontal velocity 
amplitude/(gH)f, s = [p/p(O) €1). Uinv, = solution of inviscid problem. 

I I I I 1 

In s 

FIGURE 6. Solutions of the viscous problem for r = 0.25 and k = 0, 0-5. 
U = horizontal velocity amplitude/(gH)f, s = [ p / p ( O ) ~ ] a .  

15-2 
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For r = 2.5 and a period of 12 h, i t  is roughly z < 17, i.e. below about 120 km. The 
IR shrinks as p and r increase, and as k decreases. The TR was found to be fairly 
thin, its thickness varying from 5 to 8 scale heights. For k = 0.5 and k = 1.0 the 
velocity has its maximum value in the TR and decays quite rapidly from then on. 
For small values of k, however, there is a velocity maximum near s = 0, i.e. high 
up in the VR. 

with k = 0 and k = 0.5. 
The asymptotic behaviour is known from (69) to (71). The values of 6 for k = 0.5 

Figure 6 shows solutions for the transition value r = 

3 

2 

1 

0 
- 1  0 1 2 3 4 

In 6 

FIGURE 7. Solutions of the viscous problem for r = 0.5 and k = 0, 0.5. U = horizontal 
velocity amplitude/(gR)*, 8 = [p/p(O) €16. 77, = solution of inviscid problem satisfying 
radiation condition. 

and for a period of 12 h are 27 and 21-4 respectively. Consequently, ,u is not small 
enough for the ze:" term in (70) to be negligible in the IR. Solutions for r = 0.5 
and r = 2.5, i.e. for vertical wave-numbers /3 = 0.5 and p = 1-5, are shown in 
figures 7 and 8. To make comparison with solutions of the inviscid problem easier 
we have plotted the quantity sI UI. For ,l3 = 1.5 (and both k = 0 and k = 0.5) the 
reflexion is small and sI UI in the IR  is close to a horizontal line which represents 
the solution of the inviscid problem satisfying the radiation condition. For 
/3 = 0.5, however, the reflexion is considerable and the solution in the IR departs 
noticeably from the solution obtained by using the radiation condition. 

Linearization 

A rough idea of the amplitude of the boundary oscillation, d / H ,  for which the 
linearization is valid can be obtained by examining the ratio of the density per- 
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turbation to the equilibrium density, p"/p. For small k the growth of this ratio 
with z is much greater than the growth of the velocity. From (4) one obtains 

P / P  = - ( k / g ) Z ,  (76) 

and since Z(0) = d c / H k ,  Ip(O)/p(O)l = d/H. For oscillations with a period of 12 h 
it was found that the density ratio at z = 0 must be less than about in order 
for it to remain less than 0.2. For shorter periods and k = 0-5, d / H  has to  be less 
than about 10-5. Thus, it might be expected that non-linear effects may still be 
important in problems such as the problem of atmospheric tides. 

In s 

FIGURE 8. Solutions of the viscous problem for r = 2.5 and k = 0, 0.5. U = horizontal 
velocity amplitudef(gH)h, s = [p/p(O) elk. U ,  = solution of inviscid problem satisfying 
radiation condition. 

11. Table of symbols 
x, z Horizontal and vertical co-ordinates 
t Time 
u, U I  Horizontal and vertical velocity components 
p Undisturbed density (function of z only) 
fl, Pressure and density perturbations 
k Horizontal wave-number 
r~ Frequency 
Y Stream function 
Z Stream function amplitude, Y = Zei(kz-gt)  

The quantities x*, z*, p*, k", c*, 2" are dimensionless quantities defined 
in (8). The * is generally omitted after formula (9) 

g Acceleration of gravity 
H 
d 
p Dynamic viscosity coefficient 
6 

= ( - p ' / p ) - l ,  density scale height 
Amplitude of oscillation of the lower boundary 

= p[4p(O) H2c] - l ,  small dimensionless parameter 
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6 
r 

a = y , i f r < $  

/3 
h = 2nH//3, vertical wavelength 
[ 
s = E-3 exp (&z*) 
0 = [d/d[,  differential operator 
I? Euler's Gamma Function 
$ Psi or Digamma Function 
K R  Reflexion coefficient 
q5 
U 

= -In E ,  dimensionless parameter 
= (k*/a*)2- k*2, dimensionless constant 

y = (&-r2)3 

= (r2 - $)* if r > &, dimensionless vertical wave-number 

= e-texp ( - $z* + Bin) 

Phase constant defined in (65) 
Dimensionless horizontal velocity amplitude, referred to (gH)* 

Appendix 
Let us look for formal asymptotic series of the form 

00 

Z*( [ )  N [-1*2r x c$ p n .  
0 

Substituting in the differential equation (19) yields the recursion relation. 

n(n T 2y)cf = 4(n- 4 y-  Ic)2(n - 4 T y + k)Zc$-,. (A2)  

Two infinite asymptotic series of the above type can always be determined if the 
following condition is satisfied: 

(A)  27 + n for n = 0 , 1 , 2 ,  .... There will also be cases where one of the two 
series will terminate, and will thus represent a solution of (19) exactly. If 

(B) condition A holds and ~f: Ic = N - y + 4 for some non-negative integer N ,  
(where the plus sign is taken when the right-hand side is positive, and the minus 
sign if it is negative), then the series for Z+(<) terminates: 

The solution corresponding to the lower sign satisfies the DC and is equivalent to 
the solution obtained in Q 7. The other solution does not satisfy the DC. If 

(C) 2y = N + 1 for some non-negative integer N ,  and 2k = N -  2M for some 
positive integer M < SN, the series for Z+([) terminates again: 

M M 

0 0 
Z+(g) = [-1+2r c c,+ [-2n = t 2 ( k + M ) C  C +  n ,L-2n. (A41 

This solution is also equivalent to the solution obtained in 5 7. If 

the series for Z-(() terminates: 
(D) condition A holds and k = N + y + + for some non-negative integer N ,  then 
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In  all other cmes the asymptotic series for Z+(f;) will contain a logarithmic 

(E) y = 0, or if 
(F) 2y = N + 1 for some non-negative integer n, and 2k is not a positive in- 

term. If 

teger, the asymptotic expression for Z+(E) has the form 

while the series for Z-(E) has the form (Al). The last series will terminate if 

negative integer, 
(G)  2y = N +  1 for some non-negative integer N ,  and k- 1 - +iV = M, a non- 

In all the cases solutions behave asymptotically like solutions of the inviscid 
equation. 

I would like to express my appreciation to Mrs S. Hargreaves, who programmed 
all the computations. This resemch was done while the author was on leave at the 
National Center for Atmospheric Research, Boulder, Colorado, and was sup- 
ported in part by the National Science Foundation, NSF GP-1804. 
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